4.1.1 Entstehung von Ringformen: Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
Während Triosen und Tetrosen hauptsächlich in '''Kettenform''' vorliegen, liegen Monosaccharide ab 5 C-Atomen (Pentosen) überwiegend in der sog. '''Ringform''' vor. Ringformen entstehen immer dann, wenn die Zucker (mit Aldehyd- oder Ketogruppen) mit Alkoholen reagieren. Es entsteht ein sog. '''Halbacetal''': | Während Triosen und Tetrosen hauptsächlich in '''Kettenform''' vorliegen, liegen Monosaccharide ab 5 C-Atomen (Pentosen) überwiegend in der sog. '''Ringform''' vor. Ringformen entstehen immer dann, wenn die Zucker (mit Aldehyd- oder Ketogruppen) mit Alkoholen reagieren. Es entsteht ein sog. '''Halbacetal''': | ||
<div align=center>[[Bild:Halbacetalreaktion.jpg]]</div> | <div align=center>[[Bild:Halbacetalreaktion.jpg]]</div> | ||
− | Bei Monosacchariden sind R<sub>1</sub> und R<sub>2</sub> (Alkohol und Aldehyd) im selben Molekül, einem ringförmigen Halbacetal. Dabei erfolgt die Bindung z. B. bei Glucose, einer Aldose, zwischen C<sub>1</sub> und C< | + | Bei Monosacchariden sind R<sub>1</sub> und R<sub>2</sub> (Alkohol und Aldehyd) im selben Molekül, einem ringförmigen Halbacetal. Dabei erfolgt die Bindung z. B. bei Glucose, einer Aldose, zwischen C<sub>1</sub> und C<sub>3</sub>: |
<div align=center>[[Bild:Ringbildung bei Glucose.jpg]]</div> | <div align=center>[[Bild:Ringbildung bei Glucose.jpg]]</div> | ||
+ | Durch die Ringbindung ist das C-Atom 1 asymmetrisch geworden, wodurch es zusätzliche '''optische Aktivität'''[1] erhält. Es sind zwei optische Isomere möglich – die α- (OH-Gruppe zeigt nach unten) und die β-Form (OH-Gruppe zeigt nach oben). Man spricht hier davon, daß das C<sub>1</sub>-Atom ein '''anomeres C-Atom''' ist. | ||
+ | |||
+ | In einer Lösung von Monosacchariden stellt sich immer ein bestimmtes Gleichgewicht zwischen α- und β-Form ein. Bei Glucose beträgt das Verhältnis [[Bild:alpha zu beta gleich 3 zu 1.jpg]]. Da die α-D-Glucose rechtsdrehend und die β-D-Glucose linksdrehend ist, ist aufgrund des Gleichgewichtsverhältnisses zwischen beiden Anomeren die D-Glucose-Lösung insgesamt rechtsdrehend. | ||
+ | |||
+ | Bei Ketosen erfolgt im Gegensatz zu Aldosen die Numerierung der C-Atome zunächst so, daß das C-Atom mit der höchsten Oxidationszahl eine möglichst niedrige Nummer bekommen muß: | ||
+ | |||
+ | ----- | ||
+ | |||
+ | <small>[1]: |
Version vom 15. November 2008, 16:26 Uhr
Während Triosen und Tetrosen hauptsächlich in Kettenform vorliegen, liegen Monosaccharide ab 5 C-Atomen (Pentosen) überwiegend in der sog. Ringform vor. Ringformen entstehen immer dann, wenn die Zucker (mit Aldehyd- oder Ketogruppen) mit Alkoholen reagieren. Es entsteht ein sog. Halbacetal:
Bei Monosacchariden sind R1 und R2 (Alkohol und Aldehyd) im selben Molekül, einem ringförmigen Halbacetal. Dabei erfolgt die Bindung z. B. bei Glucose, einer Aldose, zwischen C1 und C3:
Durch die Ringbindung ist das C-Atom 1 asymmetrisch geworden, wodurch es zusätzliche optische Aktivität[1] erhält. Es sind zwei optische Isomere möglich – die α- (OH-Gruppe zeigt nach unten) und die β-Form (OH-Gruppe zeigt nach oben). Man spricht hier davon, daß das C1-Atom ein anomeres C-Atom ist.
In einer Lösung von Monosacchariden stellt sich immer ein bestimmtes Gleichgewicht zwischen α- und β-Form ein. Bei Glucose beträgt das Verhältnis
. Da die α-D-Glucose rechtsdrehend und die β-D-Glucose linksdrehend ist, ist aufgrund des Gleichgewichtsverhältnisses zwischen beiden Anomeren die D-Glucose-Lösung insgesamt rechtsdrehend.
Bei Ketosen erfolgt im Gegensatz zu Aldosen die Numerierung der C-Atome zunächst so, daß das C-Atom mit der höchsten Oxidationszahl eine möglichst niedrige Nummer bekommen muß:
[1]: